

Injection moulding under cleanroom conditions

Where do we need clean conditions ?

Parts for medical use

Food and pharmaceutical packaging

Production of **optical lenses**, **displays** and parts for fiber optics engineering.

Parts for sensitive miniaturized technologies like parts for fuel injection in the **automotive area**.

Other industries....

What is a clean part ?

A part is clean if there are not any other particles, that do not belong to the part.

After processing a plastic part is clean, but even while ejection particles may be cut from the part and waste it.

A sterile part is free of any living cultures like bacteria or viren. After production (melting and freezing the plastic) the part typically is sterile.

A part may be sterile but even it needs not to be clean if existing foreign particles are sterile too.

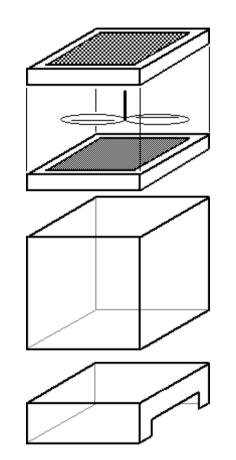
What does cleanroom condition mean ?

Clean area, no particles inside

How to reach it ?

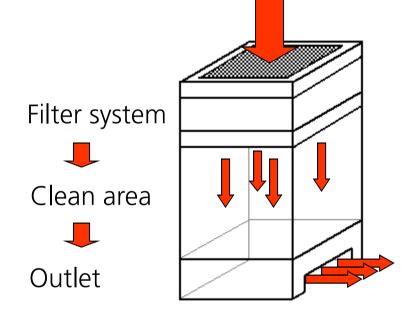
Easy to clean area (walls and internal accessories) Waste particles may not enter (tight for particles)

Constant cleaning via filtrated air stream keeping a little overpressure

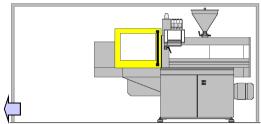


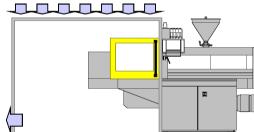
How to create a cleanroom ?

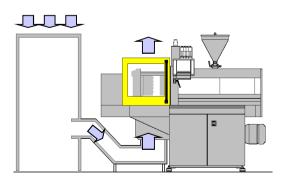
- Laminar Flow System
 - Define your clean room dimensions
 - Add a filter system with fan
 - 1. Coarse filter
 - 2. Fan
 - 3. Fine filter
 - Make sure, that the air can leave in a defined way



Laminar Flow System


The filter system with fan presses a clean air stream through the cleanroom




Production in a Clean Area Solutions for injection moulding

Complete machine in the cleanroom

- big clean volume
- high clean air throughput requested
- complete machine must be clean

Clamping system in the cleanroom

- less clean volume •
- less contamination due to machine, • plastics and equipment

Machine outside of the cleanroom

- minimum clean volume per machine
- only the parts are in the clean air ۲ stream
- the throughput of air must be ulletadjusted to the machine run

Cleanroom concept with partial integrated machine

(Presentation of a clean room)

- The two platen clamp system with the overhanging clamp unit showes the best base for this economic system.
- Separation of the clean mould area and the processing area
- There is only a minimum of the machine hydraulics in the clean mould area.

Cleanroom concept with partial integrated machine

Just the clamping unit is in the clean room.

Cleanroom class. Iso 14644-1 class. 5


(old US Fed Std. 209 class 100)

Production Sample

Machine with injection system outside of the clean area

Production Sample

Couplings for media pipes self closing stainless steel

Additional operation control inside the cleanroom. The machine can be driven from inside and outside the cleanroom.

Cleanroom classifications

Old standard: US Federal Standard 209 E

This standard counts the number of particles with a size between 0,5 μ m and 1 μ m in one cubic foot. (limitations for other particle dimensions are given too).

Example: US Federal Standard 209 E class 1000 allowes 1000 particles with a size of 0,5 μm up to 1 μm in one cubic foot.

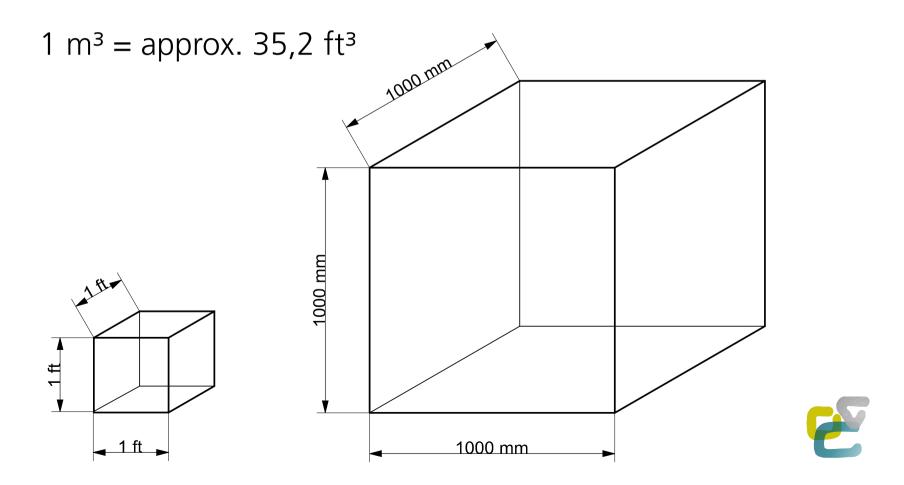
This standard is no more in use.

Cleanroom classifications Actual standard: DIN EN ISO 14644 -1

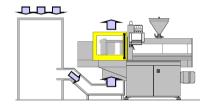
This standard counts the number of particles with a size between 0,1 μ m and 0,2 μ m in one cubic meter (limitations for other particle dimensions are given too).

ISO classification 1: ISO classification 2: ISO classification 3: ISO classification 4: ISO classification 5:

10 particles* / cubic meter
100 particles* / cubic meter
1000 particles* / cubic meter
10000 particles* / cubic meter
100000 particles* / cubic meter
* Size between 0,1 μm and 0,2 μm

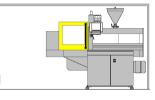

Comparison: ISO 14644-1 to US-Fed.STD.209 E

ISO 14644 - 1	1 Höchstwert der Partikelkonzentrationen (Partikel je Kubikmeter Luft) gleich							Alte
lassifizierung	goder größer als die betrachteten Größen, welche nachfolgend abgebildet							US-
zahl (N)	sind.							FEDERAL
								Standard
	0,1µm	0,2 μm	0,3 μm		0,5 μm	1 µm	5 µm	209 E
ISO Klasse 1	10	2			-	-	-	
ISO Klasse 2	100	24		10	4	-	-	
ISO Klasse 3	1.000	237	102		35	8	_	
	28	7	3		1	0		
ISO Klasse 4	10.000	2.370	1.020		352	83	-	1(
	284	67	29		10	2		
ISO Klasse 5	100.000	23.700	10.200		3.520	832	29	
	2.841	673	290		100	24	1	100
ISO Klasse 6	1.000.000	237.000	102.000		35.200	8.320	293	
	28.409	6.733	2.898		1.000	236	8	1.000
ISO Klasse 7		_		-	352.000	83.200	2.930	
	Red letters:				10.000	2.364	83	10.000
ISO Klasse 8	particles / cubic foot			-	3.520.000	832.000	29.300	
					100.000	23.636	832	100.00
SO Klasse 9	-				35.200.000	8.320.000	293.000	
	Black letters:							
	particles / cubic meter				Source: M. Petek, Reinraumtechnik			


Relation: American System – Metric System

Small version of a clean concept

Compact Cleanroom



Very simple solution of a cleanroom

00000000000

 $(\Box$

